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INTRODUCTION 

Mr. Chairman, Ranking Member, Members of the Committee, thank you for giving me the 
opportunity to testify on the analytical ambitions and centralized risk-management plans of Office 
of Financial Research (OFR).1 2  

I am here primarily as a practitioner of risk —not as an analyst but as a decision-maker, an 
eyewitness of the poor, even disastrous translation of risk research into practice. I spent close to 
two decades as a derivatives trader before becoming a full-time scholar and researcher in the 
areas of risk and probability, so I travelled the road between theory and practice in the opposite 
direction of what is commonly done. Even when I was in full-time practice I specialized in errors 
linked to theories, and the blindness from the theories of risk management.  

Allow me to present my conclusions upfront and in no uncertain terms: this measure, if I read it 
well, aims at the creation of an omniscient Soviet-style central risk manager. It makes us fall into 
the naive illusion of risk management that got us here —the same illusion has led in the past to 
the blind accumulation of Black Swan risks. Black Swans are these large, consequential, but 
unpredicted deviations in the eyes of a given observer —the observer does not see them coming, 
but, my some mental mechanism, thinks that he predicted them. Simply, there are limitations to 
our ability to measure the risks of extreme events and throwing government money on it will carry 
negative side effects. 

1)  Financial risks, particularly those known as Black Swan events cannot be measured in any 
possible quantitative and predictive manner; they can only be dealt with nonpredictive ways. The 
system needs to be made robust organically, not through centralized risk management. I will keep 
repeating that predicting financial risks has only worked on computers so far (not in the real world) 
and there is no compelling reason for that to change—as a matter of fact such class of risks is 
becoming more unpredictable.  

                                            

1 The author Thanks Daniel Kahneman and S. Ammous for helpful discussions. 
2 The ideas presented here are from the author’s  book, Taleb, N.N. (2007,2010) The Black Swan, 2d Edition, 

Random House and Penguin, and the enclosed paper Taleb, N. N. (2009) Errors, Robustness, and the Fourth Quadrant, 
International Journal of Forecasting, 25.  



 

  

 

 

2 

2) This type of venture has side effects. The very method of model-based quantitative risk 
management causes increases in risks, particularly hidden risks. Such risk management techniques 
as you are proposing have in the past caused iatrogenics —that is, harm done by the healer. 

3) Finally, risks need to be handled by the entities themselves, in an organic way, paying for their 
mistakes as they go. It is far more effective to make bankers accountable for their mistakes than 
try the central risk manager version of Soviet-style central planner, putting hope ahead of 
empirical reality.  

I will now expand on each of these points. 

 

I- The Measurability of Financial Risks 

a-  The risks of Black Swan events are not measurable 

People in finance use the term “measure” very loosely. You can use science to “measure” the 
length of the table but the same term should not be applied to something that does not currently 
exist but should take place in the future. Alas, we cannot "measure" the risk of future rare events 
like we measure the temperature. What are called tail risks are not possible to measure, neither 
mathematically nor empirically. Further, the rarer the event, the harder it is to compute its 
probability --yet the rarer the event, the larger the consequences3.  

- The past is  not a good predictor of these events —large jumps and crises do not have 
predecessors (See the author’s The Black Swan, 2nd Ed.). This applies to the latest crisis. 
Furthermore, the type of randomness we have with economic variables does not have a well 
tractable, well known structure, and can deliver vastly large events --and we are unable to get a 
handle on "how large". Conventional statistics, derived on a different class of variables, fail us 
here.  

- Even if by some miracle we were given the right model, the smallest imperfection in the rounding 
of a parameter would cause massively divergent results. Small variations in input, smaller than any 
uncertainty we have in the estimation of parameters, assuming generously one has the right 
model, can underestimate the probability of events called of "12 sigma" (that is, 12 standard 
deviations) by close to a trillion times —a fact that has been (so far) strangely ignored by the 
finance and economics establishment4.  

- The same limitations apply with even more force to the newly minted —and overhyped— 
methods based on “complexity theory” or new buzzwords like “agent-based models”. These 
models are interesting descriptions of the world, but their predictions do not seem to work outside 
of research papers (i.e. in hindsight and past back-fitting) nothing has worked so far. The same 
theoretical and practical limitations apply. 

                                            

3 See Taleb N.N. and Pilpel, A., 2007, Epistemology and Risk Management, Risk and Regulation, 13. . See P. Triana, 
2009, Lecturing Birds on Flying: Can Mathematical Theories Destroy the Markets?, J. Wiley. 

4 These “12 sigma” events and other large deviations are not just more common than people think, but they represent 
a large share of the total variance. 
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- A more technical point: the outcome of bank exposures is even less predictable than the 
variables on which they depend (say, GDP growth or other economic indicators). Just as the payoff 
from a loan is even more unpredictable than the health of a company, the payoff of a derivative is 
even less predictable than the underlying securities (because of lumpiness)5.  

 

b- These risks have not been predicted in the past 

- Had the last crisis been predictable, or the risks been measurable, then central banks with access 
to all manner of information, and thousands of PhDs on their staff, would have been able to see it. 
Their models failed in 2007-2008 (as well as in previous crises). The same applies to the 
thousands of regulators we have worldwide.  

- In addition there are many econometric laboratories and tens of thousand of research papers —
and these do not appear to deliver in the real world. 

- It has been argued that economic prediction is largely the result of individual overconfidence 
(Part II of The Black Swan); it is no different from the situation in which 90% of drivers think they 
are in the top 50% in driving abilities. Likewise, people tend to mispredict —ignoring that others 
have also mispredicted in the past, under the belief that they will get it right. 

- We can correct such overconfidence, the blindness to one’s relative performance, with the 
method of “debiasing”. It consists in letting people know the prediction of others in similar 
situations and establish a so-called reference case prediction6 . Such method often markedly 
corrects overconfidence and I would like to apply it here in this situation. There has been tens of 
thousands of scientific papers on prediction that have not replicated outside the papers. Had the 
last crisis been predictable within these quantitative methods, then central banks with access to all 
manner of information, and thousands of PhDs on their staff, would have been able to see it. They 
failed. So please ask yourselves why you believe that the next attempt will succeed. 

 

II-  Sterile Information and the Central Planner Effect 

Information’s side effects (anchoring)  

- Some may use the argument about predicting risks equal or better than nothing; using 
arguments like "we are aware of the limits". Risk  measurement and prediction —any prediction —
has side effects of increasing risk-taking, even by those who know that they are not reliable. We 
have ample evidence of so called "anchoring" in the calibration of decisions. Information, even 
when it is known to be sterile, increases overconfidence. 

- Numerous experiments provide evidence that professionals are significantly influenced by 
numbers that they know to be irrelevant to their decision, like writing down the last 4 digits of 
one's social security number before making a numerical estimate of potential market moves. 

                                            

5 Taleb, N.N., 2011, A Map and Simple Heuristic to Detect Fragility, Antifragility, and Model Error (June 4, 2011). 
SSRN: http://ssrn.com/abstract=1864633 
6 For a description of the method of debiasing, see  Kahneman, D., 2011, Thinking Fast and Slow, FSG. 
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German judges rolling  dice before sentencing showed an increase of 50% in the length of the 
sentence when the dice show a high number, without being conscious of it.7 Further Mary Kate 
Stimmler has shown the following effect with investments: if you give people a quantitative 
derivations, one simple, one complicated equation that provide the exact same end calculation, 
those with the complicated formula will end up taking more risks. 

- Aggregating information —again the central planner concept—would be costly, both directly and 
indirectly. Direct costs will be high. Indirect costs should be even higher than direct costs, just as 
the side effects of some medicine cause severe harm. People cannot gain access to sterile 
information without acting on it and producing theories from it (the narrative fallacy, in The Black 
Swan). 

 

 

 

III- Conclusion: What do we need? 

- I believe in the effectiveness of  less is more heuristics: simple rules of risk management8. THese 
consist in:  

- Removing the agency problem on the part of bank managers and staff who have upside 
and no downside. 

- Reliance on simple, "hard", non-probabilistic risk measures, based on time-tested 
heuristics. The more complicated the rule, the more likely it is to fail. 

                                            

7 See Birte Englich and Thomas Mussweiler, “Sentencing under Uncertainty: Anchoring Effects in the Courtroom,” 
Journal of Applied Social Psychology, vol. 31, no. 7 92001), pp. 1535-1551; Birte Englich, Thomas Mussweiler, and Fritz 
Strack, “Playing Dice with Criminal Sentences: the Influence of Irrelevant Anchors on Experts’ Judicial Decision 
Making,” Personality and Social Psychology Bulletin, vol. 32, no 2 (Feb. 2006), pp. 188-200. See also, Stimmler (2011), 
doctoral thesis, U.C. Berkeley. 

8 The author, has done some work along these lines, with a “Ten steps for a Black-Swan Robust Society” , republished 
in The Black Swan (2nd Edition). 
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Abstract

The paper presents evidence that econometric techniques based on variance – L2 norm – are flawed and do not replicate. The
result is un-computability of the role of tail events. The paper proposes a methodology to calibrate decisions to the degree (and
computability) of forecast error. It classifies decision payoffs in two types: simple (true/false or binary) and complex (higher
moments); and randomness into type-1 (thin tails) and type-2 (true fat tails), and shows the errors for the estimation of small
probability payoffs for type 2 randomness. The fourth quadrant is where payoffs are complex with type-2 randomness. We
propose solutions to mitigate the effect of the fourth quadrant, based on the nature of complex systems.
c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Background and purpose

It appears scandalous that, of the hundreds of
thousands of professionals involved, including prime
public institutions such as the World Bank, the
International Monetary Fund, different governmental
agencies and central banks, private institutions such as
banks, insurance companies, and large corporations,
and, finally, academic departments, only a few
individuals considered the possibility of the total
collapse of the banking system that started in 2007
(and is still worsening at the time of writing), let alone
the economic consequences of such breakdown. Not
a single official forecast turned out to be close to the
outcome experienced—even those issuing “warnings”

E-mail address: nnt@fooledbyrandomness.com.

did not come close to the true gravity of the situation.
A few warnings about the risks, such as Taleb (2007a)
or the works of the economist Nouriel Roubini,1

went unheeded, often ridiculed.2 Where did such
sophistication go? In the face of miscalculations of
such proportion, it would seem fitting to start an
examination of the conventional forecasting methods
for risky outcomes and assess their fragility—indeed,
the size of the damage comes from confidence
in forecasting and the mis-estimation of potential
forecast errors for a certain classes of variables and
a certain type of exposures. However, this was not

1 “Dr. Doom”, New York Times, August 15, 2008.
2 Note the irony that the ridicule of the warnings in Taleb (2007a)

and other ideas came from the academic establishment, not from the
popular press.

0169-2070/$ - see front matter c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ijforecast.2009.05.027
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the first time such events have happened—nor was it
a “Black Swan” (when capitalized, an unpredictable
outcome of high impact) to the observer who took
a close look at the robustness and empirical validity
of the methods used in economic forecasting and risk
measurement.

This examination, while grounded in economic
data, generalizes to all decision-making under
uncertainty in which there is a potential miscalculation
of the risk of a consequential rare event. The problem
of concern is the rare event, and the exposure to it, of
the kind that can fool a decision maker into taking a
certain course of action based on a misunderstanding
of the risks involved.

2. Introduction

Forecasting is a serious professional and scientific
endeavor with a certain purpose, namely to provide
predictions to be used in formulating decisions, and
taking actions. The forecast translates into a decision,
and, accordingly, the uncertainty attached to the
forecast, i.e., the error, needs to be endogenous to
the decision itself. This holds particularly true of risk
decisions. In other words, the use of the forecast needs
to be determined — or modified — based on the
estimated accuracy of the forecast. This in turn creates
an interdependency about what we should or should
not forecast—as some forecasts can be harmful to
decision makers.

Fig. 1 gives an example of harm coming from
building risk management on the basis of extrapolative
(usually highly technical) econometric methods,
providing decision-makers with false confidence about
the risks, and leaving society exposed to several
trillions in losses that put capitalism on the verge of
collapse.

A key word here, fat tails, implies the outsized role
in the total statistical properties played by one single
observation—such as one massive loss coming after
years of stable profits or one massive variation unseen
in past data.

– “Thin-tails” lead to ease in forecasting and
tractability of the errors;

– “Thick-tails” imply more difficulties in getting a
handle on the forecast errors and the fragility of the
forecast.

200
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Fig. 1. Indy Mac’s annual income (in millions) between 1998
and 2007. We can see fat tails at work. Tragic errors come from
underestimating potential losses, with the best known cases being
FNMA, Freddie Mac, Bear Stearns, Northern Rock, and Lehman
Brothers, in addition to numerous hedge funds.

Close to 1000 financial institutions have shut down
in 2007 and 2008 from the underestimation of outsized
market moves, with losses up to 3.6 trillion.3 Had
their managers been aware of the unreliability of the
forecasting methods (which were already apparent in
the data), they would have requested a different risk
profile, with more robustness in risk management and
smaller dependence on complex derivatives.

2.1. The smoking gun

We conducted a simple scientific examination
of economic data, using a near-exhaustive set that
includes 38 “tradable” variables4 that allow for
daily prices: major equity indices across the globe
(US, Europe, Asia, Latin America), most metals
(gold, silver), major interest rate securities, and main
currencies — what we believe represents around 98%
of tradable volume.

3 Bloomberg, Feb 5, 2009.
4 We selected a near-exhaustive set of economic data that includes

“tradable” securities that allow for a future or a forward market:
most equity indices across the globe, most metals, most interest
rate securities, and most currencies. We collected all available
traded futures data—what we believe represents around 98% of
tradable volume. The reason we selected tradable data is because
of the certainty of the practical aspect of a price on which one can
transact: a nontradable currency price can lend itself to all manner
of manipulation. More precisely we selected “continuously rolled”
futures in which the returns from holding a security are built-in. For
instance, analyses of Dow Jones that fail to account for dividend
payments or analyses of currencies that do not include interest rates
provide a bias in the measurement of the mean and higher moments.

Please cite this article in press as: Taleb, N. N. Errors, robustness, and the fourth quadrant. International Journal of Forecasting (2009),
doi:10.1016/j.ijforecast.2009.05.027
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Fig. 2. The smoking gun: Maximum contribution to the fourth
moment kurtosis coming from the largest observation in ∼10,000
(29–40 years of daily observations) for 43 economic variables. For
the Gaussian the number is expected to be ∼0.006 for n = 10,000.

We analyzed the properties of the logarithmic
returns rt,!t = Log

(
Xt

Xt−!t

)
, where !t can be 1 day,

10 days, or 66 days (non-overlapping intervals).5

A conventional test of nonnormality used in the
literature is the excess kurtosis over the normal
distribution. Thus, we measured the fourth noncentral

moment k(!t) =
∑

r4
t,!t

n of the distributions and
focused on the stability of the measurements.

By examining Table 1 and Figs. 2 and 3, it appears
that:
(1) Economic variables (currency rates, financial

assets, interest rates, commodities) are patently fat

5 By convention we use t = 1 as one business day.

tailed—with no known exception. The literature
(Bundt & Murphy, 2006) shows that this also
applies to data not considered here, owing to a lack
of daily changes, such as GDP, or inflation.

(2) Conventional methods, not just those relying on
a Gaussian distribution, but those based on least-
square methods, or using variance as a measure of
dispersion, are, according to the data, incapable
of tracking the kind of “fat-tails” we see (more
technically, in the L2 norm, as will be discussed in
Section 5). The reason is that most of the kurtosis
is concentrated in a few observations, making
it practically unknowable using conventional
methods—see Fig. 2. Other tests in Section 5
(the conditional expectation above a threshold)
show further instability. This incapacitates least-
square methods, linear regression, and similar
tools, including risk management methods such
as “Gaussian Copulas” that rely on correlations or
any form of the product of random variables.6, 7, 8

6 This should predict, for instance, the total failure in practice
of the ARCH/GARCH methods (Engle, 1982), in spite of their
successes in-sample, and in academic citations, as they are based
on the behavior of squares.

7 One counterintuive result is that sophisticated operators do not
seem to be aware of the norm they are using, thus mis-estimating
volatility, see Goldstein and Taleb (2007).

8 Practitioners have blamed the naive L2 reliance on the risk
management of credit risk for the blowup of banks in the crisis
that started in 2007. See Felix Salmon’s “Recipe For Disaster: The
Formula That Killed Wall Street” in Wired. 02/23/2009.
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Fig. 3. A selection of the 12 most acute cases among the 43 economic variables.

Please cite this article in press as: Taleb, N. N. Errors, robustness, and the fourth quadrant. International Journal of Forecasting (2009),
doi:10.1016/j.ijforecast.2009.05.027
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Table 1
Fourth Noncentral Moment at daily, 10 day, and 66 day windows for the random variables.

K (1) K (10) K (66) Max quartic Years

Australian Dollar/USD 6.3 3.8 2.9 0.12 22
Australia TB 10y 7.5 6.2 3.5 0.08 25
Australia TB 3y 7.5 5.4 4.2 0.06 21
BeanOil 5.5 7.0 4.9 0.11 47
Bonds 30Y 5.6 4.7 3.9 0.02 32
Bovespa 24.9 5.0 2.3 0.27 16
British Pound/USD 6.9 7.4 5.3 0.05 38
CAC40 6.5 4.7 3.6 0.05 20
Canadian Dollar 7.4 4.1 3.9 0.06 38
Cocoa NY 4.9 4.0 5.2 0.04 47
Coffee NY 10.7 5.2 5.3 0.13 37
Copper 6.4 5.5 4.5 0.05 48
Corn 9.4 8.0 5.0 0.18 49
Crude Oil 29.0 4.7 5.1 0.79 26
CT 7.8 4.8 3.7 0.25 48
DAX 8.0 6.5 3.7 0.2 18
Euro Bund 4.9 3.2 3.3 0.06 18
Euro Currency/DEM previously 5.5 3.8 2.8 0.06 38
Eurodollar Depo 1M 41.5 28.0 6.0 0.31 19
Eurodollar Depo 3M 21.1 8.1 7.0 0.25 28
FTSE 15.2 27.4 6.5 0.54 25
Gold 11.9 14.5 16.6 0.04 35
Heating Oil 20.0 4.1 4.4 0.74 31
Hogs 4.5 4.6 4.8 0.05 43
Jakarta Stock Index 40.5 6.2 4.2 0.19 16
Japanese Gov Bonds 17.2 16.9 4.3 0.48 24
Live Cattle 4.2 4.9 5.6 0.04 44
Nasdaq Index 11.4 9.3 5.0 0.13 21
Natural Gas 6.0 3.9 3.8 0.06 19
Nikkei 52.6 4.0 2.9 0.72 23
Notes 5Y 5.1 3.2 2.5 0.06 21
Russia RTSI 13.3 6.0 7.3 0.13 17
Short Sterling 851.8 93.0 3.0 0.75 17
Silver 160.3 22.6 10.2 0.94 46
Smallcap 6.1 5.7 6.8 0.06 17
SoyBeans 7.1 8.8 6.7 0.17 47
SoyMeal 8.9 9.8 8.5 0.09 48
Sp500 38.2 7.7 5.1 0.79 56
Sugar # 11 9.4 6.4 3.8 0.3 48
SwissFranc 5.1 3.8 2.6 0.05 38
TY10Y Notes 5.9 5.5 4.9 0.1 27
Wheat 5.6 6.0 6.9 0.02 49
Yen/USD 9.7 6.1 2.5 0.27 38

(3) There is no evidence of “convergence to normal-
ity” by aggregation, i.e., looking at the kurtosis of
weekly or monthly changes. The “fatness” of the
tails seems to be conserved under aggregation.

Clearly, had decision-makers been aware of such
facts, and such unreliability of conventional methods

in tracking large deviations, fewer losses would have
been incurred, as they would have reduced exposures
in some areas rather than rely on more “sophisticated”
methods. The financial system has been fragile, as this
simple test shows, with the evidence staring at us all
along.

Please cite this article in press as: Taleb, N. N. Errors, robustness, and the fourth quadrant. International Journal of Forecasting (2009),
doi:10.1016/j.ijforecast.2009.05.027



ARTICLE  IN  PRESS
N.N. Taleb / International Journal of Forecasting ( ) – 5

2.2. The problem of large deviations

2.2.1. The empirical problem of small probabilities
The central problem addressed in this paper is that

small probabilities are difficult to estimate empirically
(since the sample set for these is small), with a
greater error rate than that for more frequent events.
But since, in some domains, their effects can be
consequential, the error concerning the contribution
of small probabilities to the total moments of the
distribution becomes disproportionately large. The
problem has been dealt with by assuming a probability
distribution and extrapolating into the tails—which
brings model error into play. Yet, as we will discuss,
model error plays a larger role with large deviations.

2.2.2. Links to decision theory
It is not necessary here to argue that a decision

maker needs to use a full tableau of payoffs (rather
than the simple one-dimensional average forecast) and
that payoffs from decisions vary in their sensitivity to
forecast errors. For instance, while it is acceptable to
take a medicine that might be effective with a 5% error
rate, but offers no side effects otherwise, it is foolish
to play Russian roulette with the knowledge that one
should win with a 5% error rate—indeed, standard
theory of choice under uncertainty requires the use of
full probability distributions, or at least a probability
associated with every payoff. But so far this simple
truism has not been integrated into the forecasting
activity itself—as no classification has been made
concerning the tractability and consequences of the
errors. To put it simply, the mere separation between
forecasting and decisions is lacking in both rigor and
practicality, as it ruptures the link between forecast
error and the quality of the decision.

The extensive literature on decision theory and
choices under uncertainty so far has limited itself to
(1) assuming known probability distributions (except
for a few exceptions in which this type of uncertainty
has been called “ambiguity”9), and (2) ignoring fat
tails. This paper introduces a new structure of fat
tails and classification of classes of randomness into
the analysis, and focuses on the interrelation between
errors and decisions. To establish a link between

9 Ellsberg’s paradox, Ellsberg (1961); see also Gardenfors and
Sahlin (1982) and Levi (1986).

decision and quality of forecast, this analysis operates
along two qualitative lines: qualitative differences
between decisions along their vulnerability to error
rates on one hand, and qualitative differences between
two types of distributions of error rates. So there are
two distinct types of decisions, and two distinct classes
of randomness.

This classification allows us to isolate situations
in which forecasting needs to be suspended—or a
revision of the decision or exposure may be necessary.
What we call the “fourth quadrant” is the area in which
both the magnitude of forecast errors is large and
the sensitivityt to these errors is consequential. What
we recommend is either changes in the payoff itself
(clipping exposure) or the shifting of exposures away
from that part. For that we will provide precise rules.

The paper is organized as follows. First, we classify
decisions according to targeted payoffs. Second, we
discuss the problem of rare events, as these are
the ones that are both consequential and hard to
predict. Third, we present the classification of the
two categories of probability distributions. Finally, we
present the “fourth quadrant” and what we need to do
to escape it, thus answering the call for how to handle
“decision making under low predictability”.

3. The different types of decisions

The first type of decisions is simple, it aims at
“binary” payoffs, i.e. you just care whether something
is true or false. Very true or very false does not
matter. Someone is either pregnant or not pregnant.
A biological experiment in the laboratory or a
bet about the outcome of an election belong to
this category. A scientific statement is traditionally
considered “true” or “false” with some confidence
interval. More technically, they depend on the zeroth
moment, namely just on the probability of events, and
not their magnitude —for these one just cares about
“raw” probability.10

10 The difference can be best illustrated as follows. One of the
most erroneous comparisons encountered in economics is the one
between the “wine rating” and “credit rating” of complex securities.
Errors in wine rating are hardly consequential for the buyer (the
“payoff” is binary); errors in credit ratings have bankrupted banks,
as these carry massive payoffs.

Please cite this article in press as: Taleb, N. N. Errors, robustness, and the fourth quadrant. International Journal of Forecasting (2009),
doi:10.1016/j.ijforecast.2009.05.027
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Clearly these are not very prevalent in life—they
mostly exist in laboratory experiments and in research
papers.

The second type of decisions depends on more
complex payoffs. The decision maker does not just
care about the frequency, but about the impact as
well, or, even more complex, some function of the
impact. So there is another layer of uncertainty of
impact. These depend on higher moments of the
distribution. When one invests one does not care about
the frequency, how many times he makes or loses, he
cares about the expectation: how many times money is
made or lost times the amount made or lost. We will
see that there are even more complex decisions.

More formally, where p[x] is the probability
distribution of the random variable x , and D the
domain on which the distribution is defined, the payoff
λ(x) is defined by integrating on D as:

λ(x) =
∫

f (x)p(x)dx .

Note that we can incorporate utility or nonlinearities
of the payoff in the function f (x). But let us ignore
utility for the sake of simplification.

For a simple payoff, f (x) = 1. So L(x) becomes
the simple probability of exceeding x , since the final
outcome is either 1 or 0 (or 1 and −1).

For more complicated payoffs, f (x) can be
complex. If the payoff depends on a simple
expectation, i.e., λ(x) = E[x], the corresponding
function f (x) = x , and we need to ignore frequencies
since it is the payoff that matters. One can be right
99% of the time, but this does not matter at all, since
with some skewed distributions, the consequences of
the expectation of the 1% error can be too large.
Forecasting typically has f (x) = x , a linear function
of x , while measures such as least squares depend on
the higher moments f (x) = x2.

Note that some financial products can even depend
on the fourth moment (see Table 2).11

Next we turn to a discussion of the problem of rare
events.

11 More formally, a linear function with respect to the variable x
has no second derivative; a convex function is one with a positive
second derivative. By expanding the expectation of f (x) we end
up with E[ f (x)] = f (x)e[!x] + 1/2 f ′′(x)E[!x2] + · · ·, and
hence higher orders matter to the extent of the importance of higher
derivatives.

4. The problem of rare events

The passage from theory to the real world presents
two distinct difficulties: “inverse problems” and “pre-
asymptotics”.

4.1. Inverse problems

It is the greatest difficulty one can encounter in
deriving properties. In real life we do not observe
probability distributions, we just observe events. So
we do not know the statistical properties — until, of
course, after the fact — as we can see in Fig. 1. Given
a set of observations, plenty of statistical distributions
can correspond to the exact same realizations—each
would extrapolate differently outside the set of events
on which it was derived. The inverse problem is
more acute when more theories, more distributions
can fit a set of data—particularly in the presence of
nonlinearities or nonparsimonious distributions.12

So this inverse problem is compounded of two
problems:

+ The small sample properties of rare events, as
these will be naturally rare in a past sample. This
is also acute in the presence of nonlinearities,
as the families of possible models/parametrization
explode in numbers.

+ The survivorship bias effect of high impact rare
events. For negatively skewed distributions (with
a thicker left tail), the problem is worse. Clearly,
catastrophic events will be necessarily absent from
the data, since the survivorship of the variable
itself will depend on such effect. Thus, left tailed
distributions will (1) overestimate the mean; (2)
underestimate the variance and the risk.

Fig. 4 shows how we normally lack data in the tails;
Fig. 5 shows the empirical effect (see Fig. 6).

4.2. Pre-asymptotics

Theories can be extremely dangerous when they
were derived in idealized situations, the asymptote, but
are used outside the asymptote (at its limit, say infinity

12 A Gaussian distribution is parsimonious (with only two
parameters to fit). But the problem of adding layers of possible
jumps, each with a different probabilities, opens up endless
possibilities of combinations of parameters.
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Table 2
Tableau of decisions.

Mo M1 M2+

“True/False” Expectations
LINEAR PAYOFF NONLINEAR PAYOFF

f (x) = 0 f (x) = 1 f (x) nonlinear(= x2, x3, etc.)
Medicine (health not epidemics) Finance: nonleveraged investment Derivative payoffs
Psychology experiments Insurance, measures of expected shortfall Dynamically hedged portfolios
Bets (prediction markets) General risk management Leveraged portfolios (around the loss point)
Binary/Digital derivatives Climate Cubic payoffs (strips of out of the money options)
Life/Death Economics (Policy) Errors in analyses of volatility

Security: Terrorism, Natural catastrophes Calibration of nonlinear models
Epidemics Expectation weighted by nonlinear utility
Casinos Kurtosis-based positioning (“volatility trading”)

0.2

0.15

0.1

0.05

-15 -12.5 -10 -7.5 -5 -2.5

Fig. 4. The confirmation bias at work. The shaded area shows what
tend to be missing from the observations. For negatively-skewed,
fat-tailed distributions, we do not see much of negative outcomes
for surviving entities AND we have a small sample in the left tail.
This illustrates why we tend to see a better past for a certain class of
time series than is warranted.

Log (Sft [t])

Log (Sf [t+1])

0.01

0.005

0.002

0.001

0.0005

0.0005 0.001 0.002 0.005 0.01

Fig. 5. Outliers don’t predict outliers. The plot shows (on a
logarithmic scale) a shortfall in one given year against the shortfall
the following one, repeated throughout for the 43 variables. A
shortfall here is defined as the sum of deviations in excess of 7%.
Past large deviations do not appear to predict future large deviations,
at different lags.

Log (Sft [t])

Log (Sf [t+1])

0.05
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0.02

0.005

0.002

0.001

0.001 0.002 0.005 0.01 0.050.02

Fig. 6. Regular events predict regular events. This plot shows, by
comparison with Fig. 5, how, for the same variables, the mean
deviation in one period predicts the one in the subsequent period.

or the infinitesimal). Some asymptotic properties do
work well pre-asymptotically (as we’ll see, with type-
1 distributions), which is why casinos do well, but
others do not, particularly when it comes to the class
of fat-tailed distributions.

Most statistical education is based on these
asymptotic, laboratory-style Platonic properties—yet
we take economic decisions in the real world that very
rarely resembles the asymptote. Most of what students
of statistics do is assume a structure, typically with
a known probability. Yet the problem we have is not
so much making computations once you know the
probabilities as finding the true distribution.

5. The two probabilistic structures

There are two classes of probability domains —
very distinct qualitatively and quantitatively — ac-
cording to precise mathematical properties. The first,
Type-1,
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we call “benign” thin-tailed nonscalable, the second,
Type 2, “wild” thick tailed scalable, or fractal (the at-
tribution “wild” comes from the classification of Man-
delbrot, 1963, 2001).

Taleb (2009) makes the distinction along the lines
of convergence to the Central Limit Theorem. Type-1
converges in an acceptable form, while Type-2 either
does not converge (infinite variance), or converges
only in a remote asymptote and needs to be treated
pre-asymptotically. Taleb (2009) also shows that one
of the mistakes in the economics literature that “fattens
the tails”, with two main classes of nonparsimonious
models and processes (the jump-diffusion processes
of Merton, 1976,13 or stochastic volatility models
such as Engels’ ARCH14) is to believe that the
second type of distribution is amenable to analyses
like the first—except with fatter tails. In reality, a
fact commonly encountered by practitioners is that
fat-tailed distributions are very unwieldy—as we can
see in Fig. 2. Furthermore, we often face a problem
of mistaking one for the other: a process that is
extremely well behaved, but, on occasions, delivers
a very large deviation, can easily be mistaken for a
thin-tailed one—a problem known as the “problem
of confirmation” (Taleb, 2007a,b). So we need to be
suspicious of the mistake of taking Type-2 for Type-1,
as it is more severe (and more readily made) than the
one in the other direction.15

As we saw from the data presented, this
classification of “fat tails” does not just mean having a
fourth moment worse than the Gaussian. The Poisson
distribution, or a mixed distribution with a known
Poisson jump, would have tails thicker than the
Gaussian; but this mild form of fat tails can be dealt
with rather easily—the distribution has all its moments
finite. The problem comes from the structure of the
decline in probabilities for larger deviations and the
ease with which the tools at our disposal can be tripped
into producing erroneous results from observations of
data in a finite sample and jumping to wrong decisions.

13 See the general decomposition into diffusion and jump (non-
scalable) in Duffie, Pan, and Singleton (2000) and Merton (1976);
and the discussion in Baz and Chacko (2004) and Haug (2007).
14 Engle (1982).
15 Makridakis et al. (1993) and Makridakis and Hibon (2000)

present evidence that more complicated methods of forecasting
do not deliver superior results to simple ones (already bad). The
obvious reason is that the errors in calibration swell with the
complexity of the model.

5.1. The scalable property of type-2 distributions

Take a random variable x . With scalable distribu-
tions, asymptotically, for x large enough (i.e. “in the
tails”), P[X>nx]

P[X>x] depends on n, not on x (the same
property can hold for P[X < nx] for negative values).
This induces statistical self-similarities. Note that ow-
ing to the finiteness of the realizations of random vari-
ables, and the lack of samples in the tails, we might
not be able to observe such a property, yet not be able
to rule out.

For economic variables, there is no fundamental
reason for the ratio of “exceedances” (i.e., the cumu-
lative probability of exceeding a certain threshold) to
decline, as both the numerator and the denominators
are multiplied by 2.

This self-similarity at all scales generates power-
law, or Paretian, tails, i.e., above a crossover point,
P[X > x] = K x−α .16, 17

Let us now draw the implications of type-2
distributions.

5.1.1. Finiteness of moments and higher order effects
For thick tailed distributions, moments higher than

α are not “finite”, i.e., they cannot be computed.
They can certainly be measured in finite samples—
thus giving the illusion of finiteness. But they typically
show a great degree of instability. For instance, a
distribution with an infinite variance will always
provide, in a sample, the illusion of finiteness of
variance.

In other words, while errors converge for type-1
distributions, the expectations of higher orders of x ,
say of order n, such as 1/n!E[xn], where x is the
error, do not decline; in fact, they become explosive
(see Fig. 7).

16 Scalable discussions: introduced by Mandelbrot (1963),
Mandelbrot (1997) and Mandelbrot and Taleb (in press).
17 Complexity and power laws: Amaral et al. (1997), Sornette

(2004), and Stanley, Amaral, Gopikrishnan, and Plerou (2000);
for scalability in different aspects of financial data, Gabaix,
Gopikrishnan, Plerou, and Stanley (2003a,b), Gabaix, Ramalho, and
Reuter (2003c), Gopikrishnan, Meyer, Amaral, and Stanley (1998),
Gopikrishnan, Plerou, Amaral, Meyer, and Stanley (1999), and
Gopikrishnan, Plerou, Gabaix, and Stanley (2000). For the statistical
mechanics of scale-free networks see Albert, Jeong, and Barabási
(2000), Albert and Barabasi (2002) and Barabási and Albert (1999).
The “sandpile effect” (i.e., avalanches and cascades) is discussed by
Bak (1996) and Bak, Tang, and Wiesenfeld (1987, 1988), as power
laws arise from conditions of self-organized criticality.
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Crude Oil: Annual Kurtosis 1983-2008
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Fig. 7. Kurtosis over time: example of an “infinite moment”. The graph shows the fourth moment for crude oil in annual nonoverlapping
observations between 1982 and 2008. The instability shows in the dependence of the measurement on the observation window.

5.1.2. “Atypicality” of moves
For thin tailed domains, the conditional expectation

of a random variable X , conditional on its exceeding a
number K , converges to K for larger values of K .

lim
K→∞

E[X |X>K ] = K .

For instance, the conditional expectation for a
Gaussian variable (assuming a mean of 0) conditional
on the variable exceeding 0 is approximately 0.8
standard deviations. But with K equals 6 standard
deviations, the conditional expectation converges to
6 standard deviations. The same applies to all of the
random variables that do not have a Paretian tail. This
induces some “typicality” of large moves.

For fat tailed variables, such a limit does not seem
to hold:

lim
K→∞

E[X |X>K ] = K c,

where c is a constant. For instance, the conditional
expectation of a market move, given that it is in
excess of 3 mean deviations, will be around 5 mean
deviations. The expectation of a move conditional on
it being higher than 10 mean deviations will be around
18. This property is quite crucial.

The atypicality of moves has the following
significance.

– One may correctly predict a given event, say, a
war, a market crash, or a credit crisis. But the
amplitude of the damage will be unpredicted. The

open-endedness of the outcomes can cause a severe
miscalculation of the expected payoff function.
For instance, the investment bank Morgan Stanley
predicted a credit crisis but was severely hurt (and
needed to be rescued) because it did not anticipate
the extent of the damage.

– Methods like Value-at-Risk18 that may correctly
compute, say, a 99% probability of not losing
no more than a given sum, called “value-at-
risk”, will nevertheless miscompute the conditional
expectation should such a threshold be exceeded.
For instance, one has 99% probability of not
exceeding a $1 million loss, but should such a loss
occur, it can be $10 million or $100 million.

This lack of typicality is of some significance.
Stress testing and scenario generation are based on
assuming a “crisis” scenario and checking robustness
to it. Unfortunately such luxury is not available for fat
tails, as “crises” do not have a typical magnitude.

Tables 3 and 4 show the evidence of a lack
of convergence to thin tails, and hence a lack of
“typicality” of the moves. We stopped for segments
for which the number of observations becomes small,
since a lack of observations in the tails can provide the
illusion of “thin” tails.

18 For the definition of Value at Risk see, Jorion (2001); for a
critique, see Joe Nocera, “Risk Mismanagement: What led to the
Financial Meltdown”, New York Time Magazine, Jan 2, 2009.
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Table 3
Conditional expectation for moves > K , 43 economic variables.

K , Mean
deviations

Mean move (in MAD)
in excess of K

n

1 2.01443 65,958
2 3.0814 23,450
3 4.19842 8,355
4 5.33587 3,202
5 6.52524 1,360
6 7.74405 660
7 9.10917 340
8 10.3649 192
9 11.6737 120

10 13.8726 84
11 15.3832 65
12 19.3987 47
13 21.0189 36
14 21.7426 29
15 24.1414 21
16 25.1188 18
17 27.8408 13
18 31.2309 11
19 35.6161 7
20 35.9036 6

Table 4
Conditional expectation for moves < K , 43 economic variables.

K , Mean
deviations

Average move (in MAD)
below K

n

−1 −2.06689 62,803
−2 −3.13423 23,258
−3 −4.24303 8,676
−4 −5.40792 3,346
−5 −6.66288 1,415
−6 −7.95766 689
−7 −9.43672 392
−8 −11.0048 226
−9 −13.158 133
−10 −14.6851 95
−11 −17.02 66
−12 −19.5828 46
−13 −21.353 38
−14 −25.0956 27
−15 −25.7004 22
−16 −27.5269 20
−17 −33.6529 16
−18 −35.0807 14
−19 −35.5523 13
−20 −38.7657 11

5.1.3. Preasymptotics
Even if we eventually converge to a probability

distribution of the kind well known and tractable, it is
central that the time to convergence plays a large role.

For instance, much of the literature invokes the
Central Limit Theorem to assume that fat-tailed
distributions with a finite variance converge to
a Gaussian under summation. If daily errors are
fat-tailed, cumulative monthly errors will become
Gaussian. In practice, this does not appear to hold.
The data, as we saw earlier, show that economic
variables do not remotely converge to the Gaussian
under aggregation.

Furthermore, finiteness of variance is a necessary
but highly insufficient condition. Bouchaud and
Potters (2003) showed that the tails remain heavy
while the body of the distribution becomes Gaussian
(see Fig. 8).

5.1.4. Metrics
Much of time series work seems to be based on

metrics which are in the square domain, and hence
patently intractable. Define the norm L p:
(

1
n

∑
|x |p

) 1
p
;

it will increase along with p. The numbers can become
explosive, with rare events taking a disproportionately
larger share of the metric at higher orders of p.
Thus the variance/standard deviation (p = 2), as
a measure of dispersion, will be far more unstable
than mean deviation (p = 1). The ratio of mean-
deviation to variance (Taleb, 2009) is highly unstable
for economic variables. Thus, modelizations based on
variance become incapacitated. More practically, this
means that for distributions with a finite mean (tail
exponent greater than 1), the mean deviation is more
“robust”.19

19 A note on the weaknesses of nonparametric statistics: the mean
deviation is often used as a robust, nonparametric or distribution-
free statistic. It does work better than the variance, as we saw, but
does not contain information on rare events, by the argument seen
before. Likewise, nonparametric statistical methods (relying on the
empirical frequency) will be extremely fragile to the “black swan
problem”, since the absence of large deviations in the past leave us
in a near-total opacity about their occurrence in the future—as we
saw in Fig. 4, these are confirmatory. In other words, nonparametric
statistics that consist of fitting a kernel to empirical frequencies,
assume, even more than other methods, that a large deviation will
have a predecessor.
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Fig. 8. Behavior of kurtosis under aggregation: we lengthen the
window of changes from 1 day to 50 days. Even for variables with an
infinite fourth moment, the kurtosis tends to drop under aggregation
in small samples, then rise abruptly after a large observation.

5.1.5. Incidence of rare events
One common error is to believe that thickening the

tails leads to an increase of the probability of rare
events. In fact, it usually leads to a decrease of the
incidence of such events, but the magnitude of the
event, should it happen, will be much larger.

Take, for instance, a normally distributed random
variable. The probability of exceeding 1 standard
deviation is about 16%. Observed returns in the
markets, with a higher kurtosis, present a lower
probability of exceeding the same threshold, around
7%–10%, but the depth of the excursions is greater.

5.1.6. Calibration errors and fat tails
One does not need to accept power laws to use

them. A convincing argument is that if we don’t
know what a “typical” event is, fractal power laws
are the most effective way to discuss the extremes
mathematically. It does not mean that the real world
generator is actually a power law—it means that we
don’t understand the structure of the external events
it delivers and need a tool of analysis. Also, fractals
simplify the mathematical discussions because all you
need to do is to perturbate one parameter, here the α,
and it increases or decreases the role of the rare event
in the total properties.

Say, for instance, that, in an analysis, you move
α from 2.3 to 2 for data in the publishing business;
the sales of books in excess of 1 million copies would
triple! This method is akin to generating combinations
of scenarios with series of probabilities and series of
payoffs, fattening the tail at each time.

The following argument will help illustrate the
general problem with forecasting under fat tails. Now

800

600

400

200

1 2 3 4 5 6

n= 40,431

Fig. 9. Estimation error from 40 thousand economic variables.

the problem: Parametrizing a power law lends itself
to extremely large estimation errors (since heavy tails
have inverse problems). Small changes in the α main
parameter used by power laws lead to extremely large
effects in the tails.

And we don’t observe the α—an uncertainty that
comes from the measurement error. Fig. 9 shows more
than 40 thousand computations of the tail exponent α

from different samples of different economic variables
(data for which it is impossible to refute fractal power
laws). We clearly have problems figuring out what
the α is: our results are marred by errors. The mean
absolute error in the measurement of the tail exponent
is in excess of 1 (i.e. between α = 2 and α = 3).
Numerous papers in econophysics found an “average”
alpha between 2 and 3—but if you process the >20
million pieces of data analyzed in the literature, you
find that the variations between single variables are
extremely significant.20

Now this mean error has massive consequences.
Fig. 10 shows the effect: the expected value of your
losses in excess of a certain amount (called the
“shortfall”) is multiplied by >10 from a small change
in the α that is less than its mean error.21

20 One aspect of this inverse problem is even pervasive in Monte
Carlo experiments (much better behaved than the real world), see
Weron (2001).
21 Note that the literature on extreme value theory (Embrechts,

Klüppelberg, & Mikosch, 1997) does not solve much of the
problem, as the calibration errors stay the same. The argument
about calibration we saw earlier makes the values depend on the
unknowable tail exponent. This calibration problem explains how
Extreme Value Theory works better on computers than in the
real world (and has failed completely in the economic crisis of
2008–2009).
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Fig. 10. The value of the expected shortfall (expected losses in
excess of a certain threshold) in response to changes in the tail
exponent α. We can see it explode by an order of magnitude.

6. The map

First quadrant: Simple binary decisions, under
type-1 distributions: forecasting is safe. These
situations are, unfortunately, more common in
laboratories and games than in real life. We rarely
observe these in payoffs in economic decision making.
Examples: some medical decisions, casino bets,
prediction markets.

Second quadrant: Complex decisions under
type-1 distributions: Statistical methods may work
satisfactorily, though there are some risks. True, thin-
tails may not be a panacea, owing to preasymptotics,
lack of independence, and model error. There are
clearly problems there, but these have been addressed
extensively in the literature (see Freedman, 2007).

Third quadrant: Simple decisions, under type-2
distributions: there is little harm in being wrong—the
tails do not impact the payoffs.

Fourth quadrant: Complex decisions under type-
2 distributions: this is where the problem resides.
We need to avoid the prediction of remote payoffs—
though not necessarily ordinary ones. Payoffs from
remote parts of the distribution are more difficult to
predict than closer parts.

A general principle is that, while in the first three
quadrants you can use the best model you can find, this
is dangerous in the fourth quadrant: no model should
be better than just any model. So the idea is to exit the
fourth quadrant.

The recommendation is to move into the third
quadrant—it is not possible to change the distribution;
but it is possible to change the payoff, as will be
discussed in Section 7 (see Table 5).

The subtlety is that, while we have a poor idea
about the expectation in the 4th quadrant, exposures
to rare events are not symmetric.

7. Decision-making and forecasting in the fourth
quadrant

7.1. Solutions by changing the payoff

Finally, the main idea proposed in this paper is
to endogenize decisions, i.e., escape the 4th quadrant
whenever possible by changing the payoff in reaction
to the high degree of unpredictability and the harm it
causes. How?

Just consider that the property of “atypicality”
of the moves can be compensated by truncating
the payoffs, thus creating an organic “worst case”
scenario that is resistant to forecast errors. Recall
that a binary payoff is insensitive to fat tails
precisely because above a certain level, the domain of
integration, changes in probabilities do not impact the
payoff. So making the payoff no longer open-ended
mitigates the problems, thus making it more tractable
mathematically.

A way to express it using moments: all moments
of the distribution become finite in the absence of
open-ended payoffs, by putting a floor L below which
f (x) = 0, as well a ceiling H . Just consider that if you
are integrating payoffs in a finite, rather than an open-
ended domain, i.e. between L and H , respectively, the
tails of the distributions outside that domain no longer
matter. Thus the domain of integration becomes the
domain of payoff.

λ(x) =
∫ H

L
f (x) p(x)dx .

With an investment portfolio, for instance, it is
possible to “put a floor” on the payoff using insurance,
or, even better, by changing the allocation. Insurance
products are tailored with a maximum payoff;
catastrophe insurance products are also set with a
“cap”, though the cap might be high enough to allow
for a dependence on the error of the distribution.22

22 Insurance companies might cap the payoff of a single claim, but
a collection of capped claims might represent some problems, as the
maximum loss becomes so large as to be almost undistinguishable
from that with an uncapped payoff.
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Table 5
The four quadrants.

Simple payoffs Complex payoffs

Distribution 1 (“thin tailed”) First quadrant: Second quadrant:
Extremely safe Safe

Distribution 2 (no or unknown characteristic scale) Third quadrant: Fourth quadrant:
Safe Dangersa

a The dangers are limited to exposures in the negative domain (i.e., adverse payoffs). Some exposures, we will see, can only be “positive”.

7.1.1. The effect of skewness
We omitted earlier to discuss asymmetry in either

the payoff or the distribution. Clearly, the fourth
quadrant can present either left or right skewness.
If we suspect right-skewness, the true mean is more
likely to be underestimated by the measurement of
past realizations, and the total potential is likewise
poorly gauged. A biotech company (usually) faces
positive uncertainty, a bank faces almost exclusively
negative shocks.

More significantly, by raising the L (the lower
bound), one can easily produce positive skewness,
with a set floor for potential adverse outcomes and
open upside. For instance, what Taleb (2007a) calls a
“barbell” investment strategy consists of allocating a
high portion of a portfolio to T-Bills (or equivalent),
say α, with 0 < α < 1, and a small portion (1 − α) to
high-variance securities. While the total portfolio has
medium variance, L = (1 − α) times the face value
invested, another portfolio of the same variance might
lose 100%.

7.1.2. Convex and concave to error
If a source of uncertainty can offer more benefits

than a potential harm, then there may be gains from
it—which we label “convex” or “concave”.

More generally, we can be concave to model error
if the payoff from the error (obtained by changing
the tails of the distribution) has a negative second
derivative with respect to the change in the tails, or is
negatively skewed (like the payoff of a short option). It
will be convex if the payoff is positively skewed (like
the payoff of a long option).

7.1.3. The effect of leverage in operations and
investment

Leveraging in finance has the effect of increasing
concavity to model error. As we will see, it is exactly
the opposite of redundancy—it causes payoffs to

increase, but at the costs of an absorbing barrier should
there be an extreme event that exceeds the allowance
made in the risk measurement. Redundancy, on the
other hand, is the equivalent of de-leveraging, i.e. by
having more idle “inefficient” capital on the side. But
a a second look at such funds can reveal that there may
be a direct expected value from being able to benefit
from opportunities in the event of asset deflation, and
hence “idle” capital needs to be analyzed as an option.

7.2. Solutions by mitigating forecasting errors

7.2.1. Optimization vs. redundancy
The optimization paradigm of the economics

literature meets some problems in the fourth quadrant:
what if we have a consequential forecasting error?
Aside from the issue that the economic agent is
optimizing on the future states of the world, with
a given probability distribution, nowhere23 have the
equations taken into account the possibility of a
large deviation that would allow not optimizing
consumption and having idle capital. Also, the
psychological literature on well-being (Kahneman,
1999) shows an extremely concave utility function of
income—if one spends such income. But if one hides
it under the mattress, one will be less vulnerable to
an extreme event. So there is an enhanced survival
probability for those who have additional margin.

While economics have been mired in conventional
linear analysis, stochastic optimization with Bellman-
style equations that fall into the category Type-1, a
different point of view is provided by complex systems
analysis. One of the central attributes of complex
systems is redundancy (May, Levin, & Sugihara,
2008).

23 See Merton (1992) for a discussion of the general consumption
Capital Asset Pricing Market.
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Biological systems — those that have survived
millions of years — include a large share of
redundancies.24, 25 Just consider the number of double
organs (lungs, kidneys, ears). This may suggest an
option-theoretic analysis: redundancy is like an option.
One certainly pays for it, but it may be necessary
for survival. And while redundancy means similar
functions used by identical organs or resources,
biological systems have, in addition, recourse to
“degeneracy”, the possibility of one organ to perform
more than one function, which is the analog of
redundancy at a functional level (Edelman & Gally,
2001).

When institutions such as banks optimize, they
often do not realize that a simple model error can blow
through their capital (as it just did) (see Fig. 11).

Examples: In one day in August 2007, Goldman
Sachs experienced 24 times the average daily
transaction volume26—would 29 times have blown
up the clearing system? Another severe instance of
an extreme “spike” lies in an event of September
18, 2008, in the aftermath of the Lehman Bothers
Bankruptcy. According to congress documents, only
made public in February 2009:

On Thursday (Sept 18), at 11 am the Federal Reserve
noticed a tremendous draw-down of money market
accounts in the US, to the tune of $550 billion27 was
being drawn out in the matter of an hour or two.

If they had not done that [add liquidity], their
estimation is that by 2 pm that afternoon, $5.5 trillion
would have been drawn out of the money market system
of the U.S., which would have collapsed the entire
economy of the U.S., and within 24 h the world economy
would have collapsed. It would have been the end of our
economic system and our political system as we know
it.28

For naive economics, the best way to effectively
reduce costs is to minimize redundancy, and hence
avoiding the option premium of insurance. Indeed,

24 May et al. (2008).
25 For the scalability of biological systems, see Burlando (1993),

Enquist and Niklas (2001), Harte, Kinzig, and Green (1999), Ritchie
and Olff (1999) and Solé, Manrubia, Benton, Kauffman, and Bak
(1999).
26 Personal communication, Pentagon Highland Forum, April

meeting, 2008.
27 Even if the number, as is possible, is off by one order of

magnitude, the consequences remain extremely severe.
28 http://www.liveleak.com/view?i=ca2 1234032281.

Type-1 Noise

Type-2 Noise

Fig. 11. Comparison between Gaussian-style noise and Type-2
noise with extreme spikes—which necessitates more redundancy
(or insurance) than normally required. Policymakers and forecasters
were not aware that complex systems tend to produce the second
type of noise.

some systems tend to optimize and therefore become
more fragile. Albert and Barabasi (2002) and Barabási
and Albert (1999) warned (ahead of the North Eastern
power outage of August 2003) how electricity grids,
for example, optimize to the point of not coping with
unexpected surges—which predicted the possibility of
a blackout of the magnitude of the one that took place
in the North Eastern U.S. in August 2003. We cannot
discuss “flat earth” globalization without realizing
that it is overoptimized to the point of maximal
vulnerability.

7.2.2. Time and sample size
It takes much, much longer for a fat-tailed time

series to reveal its properties—in fact, many can,
in short episodes, masquerade as thin-tailed. At the
worst, we don’t know how long it would take to
know. But we can have a pretty clear idea whether
organically, because of the nature of the payoff, the
“Black Swan” can hit on the left (losses) or on the
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right (profits). This point can be used in climatic
analysis. Things that have worked for a long time are
preferable—they are more likely to have reached their
ergodic states.

Likewise, portfolio diversification needs to be
larger, much larger than anticipated. A mean variance
Markowitz-style portfolio construction fails in the
real world on several accounts. Taleb (2009) shows
that, even if we assume finite variance, but fat tails
and an unknown variance, the process of discovery
of the variance itself makes portfolio theory totally
unusable. DeMiguel, Garlappi, and Uppal (2007)
show that a naive 1/n allocation outperforms out-of-
sample any form of “optimal” portfolio—compatible
with the notion that fat tails (and unknown future
properties from past samples) require much broader
diversification than is required by modern portfolio
theory.

7.2.3. The problem of moral hazard
It is optimal (both economically and psychologi-

cally) to make a series of annual bonuses betting on
hidden risks in the fourth quadrant, then “blow up”
(Taleb, 2004). The problem is that bonus payments are
made with a higher frequency (i.e. annually) than is
warranted from the statistical properties (when it takes
longer to capture the statistical properties).

7.2.4. Metrics
Conventional metrics based on type 1 randomness

fail to produce reliable results—while the economics
literature is grounded in them. Concepts like “standard
deviation” are not stable and do not measure anything
in the fourth quadrant. This is also true for “linear
regression” (the errors are in the fourth quadrant),
“Sharpe ratio”, the Markowitz optimal portfolio,29

ANOVA, Least squares, etc. “Variance” and “standard
deviation” are terms invented years ago when we had
no computers. Note that from the data shown and the
instability of the kurtosis, no sample will ever deliver
the true variance in a reasonable time. However,
note that truncating payoffs blunts the effects of the
inadequacy of the metrics.

29 The framework of Markowitz (1952), as it is built on the L2

norm, does not stand any form of empirical or even theoretical
validity, owing to the dominance of higher moment effects, even
in the presence of “finite” variance, see Taleb (2009).

8. Conclusion

To conclude, we offered a method of robustifying
payoffs from large deviations and making forecasts
possible to perform. The extensions can be generalized
to a larger notion of society’s safety—for instance how
we should build systems (internet, banking structure,
etc.) to be impervious to random effects.
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